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Abstract

We study the pentaquark with J = 3/2 and I = 1 (Θ++) in the QCD sum rule approach. We

derive the QCD sum rules for positive and negative parity states of the pentaquark. The QCD

sum rule predicts that there exists Θ++ with negative parity and its mass is 1.5 ∼ 1.6 GeV. The

negative parity Θ++ can be extremely narrow, since it lies much below the ∆K threshold and

the decay into KN state is strongly suppressed due to the D-wave centrifugal barrier. Also, the

possibility of the existence of the Θ++ with positive parity is not excluded. Although it nearly

degenerates with the negative parity state, it may be broader than the negative parity state.
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An exotic baryon state with positive strangeness has recently been observed by LEPS

collaboration in Spring-8 [1]. The mass is ∼ 1540 MeV and the width is unusually small:

Γ < 25 MeV. It was confirmed by subsequent experiments [2, 3, 4, 5, 6, 7, 8, 9, 10]. In all

cases the mass is near 1540 MeV and the width is small. The spin and parity have not yet

been experimentally determined. Concerning the isospin, there is an experimental indication

that Θ+ has I = 0 [3, 5]. This state cannot be a three-quark state since it has S = +1, and

the minimal quark content is (uudds̄). It has come to be called “pentaquark Θ+”.

Besides the calculation in the chiral quark soliton model [11], which motivated the pen-

taquark search by LEPS collaboration, the discovery of Θ+ has triggered an intense the-

oretical activity to clarify the quantum numbers and to understand the structure of the

Θ+ [12, 13, 14, 15, 16, 17, 18]. However, no consensus has yet been seen on the quantum

numbers and the structure.

The discovery of Θ+ leads us to think of the possibility of the existence of pentaquarks

with various quantum numbers. Recently, it has been found from a quark model that the

pentaquark with JP = 3/2− and I = 1 can exist as a low lying state for uudds̄ system and

nearly degenerate with JP = 1/2+ or 3/2+ and I = 0 pentaquark [19]. If such a state lies

much below the ∆K threshold, it can be extremely narrow, since it decays only to D-wave

KN states and the width is strongly suppressed due to the high centrifugal barrier [19]. In

order to ascertain the existence of the narrow pentaquark with JP = 3/2− and I = 1, it is

crucial to estimate its absolute mass, since the width is sensitive to the energy difference

from the ∆K threshold.

In this paper, we study J = 3/2 and I = 1 pentaquark (Θ++) by using the method of

QCD sum rule [22], which is closely related to the fundamental theory and able to evaluate

the absolute masses of hadrons without any model assumptions. In QCD sum rule approach,

a correlation function of an interpolating field is calculated by the use of the operator product

expansion (OPE), and is compared with the spectral representation via dispersion relation.

The sum rules relate hadron properties to the vacuum expectation values of QCD operators

(condensates), such as 〈0|q̄q|0〉, 〈0|(αs/π)G2|0〉 and so on.

The correlation function from which we derive the QCD sum rule is

Πµν(p) = −i
∫

dx4 exp(ipx)〈0|T [ηµ(x)η̄ν(0)] |0〉, (1)

where ηµ is an interpolating field for the pentaquark with JP = 3/2− and I = 1. We use
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the following interpolating field,

ηµ = ǫcfg(ǫabcu
T
a Cγ5db)(ǫdefu

T
d Cγµue)Cs̄T

g , (2)

where u, d and s are up, down and strange quark fields, resepectively, roman indices a, b, . . .

are color, C denotes charge conjugation matrix, and T transpose. ǫabcu
T
a Cγ5db is a color 3̄

scalar diquark operator with I=0. ǫdefu
T
d Cγµue is a color 3̄ axial-vector diquark operator

with I = 1. Thus Eq.(2) is totally I = 1 and it contains the state with JP = 3/2−. The

way of constructing the interpolating field, Eq.(2), is based on the picture of the pentaquark

structure found from the quark model calculation mentioned above [19]. According to the

Ref.[19], the pentaquark with JP = 3/2− and I = 1 consists of two color 3̄ diquarks and

an anti-strange quark. One of the diquarks has S = 0 and I = 0 and the other S = 1 and

I = 1. Evidently, the interpolating field, Eq.(2), possesses the same diquark structure.

The correlation function, Eq.(1), has various tensor structures,

Πµν(p) = gµνp/Π1(p
2) + gµνΠ2(p

2) + γµγνΠ3(p
2) + · · · . (3)

We are interested in the terms proportional to gµν :

Π(p) ≡ p/Π1(p
2) + Π2(p

2), (4)

since these terms receive the contribution of pure J = 3/2 states. In the other terms,

J = 1/2 states contribute as well as J = 3/2 states [23].

We can relate the correlation function with the spectral function via Lehman represen-

tation,

Π(p0, p) =
∫ ∞

−∞

ρ(p′0, p)

p0 − p′0
dp′0, (5)

where ρ(p0, p) is the spectral function. On the other hand, in the deep Euclid region,

p2
0 → −∞, the correlation function can be evaluated by an operator product expansion.

Then the correlation function is expressed as a sum of various vacuum condensates. Using

the analyticity, we obtain a relation between the imaginary part of the correlation function

evaluated by an OPE, ρOPE, and the spectral function as

∫ ∞

−∞
dp0ρ

OPE(p0, p)W (p0) =
∫ ∞

−∞
dp0ρ(p0, p)W (p0), (6)
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where W (p0) is an analytic function of p0. Eq.(6) is a general form of the QCD sum rule.

By properly parameterizing ρ(p0, p), we obtain QCD sum rules for physical quantities in

ρ(p0, p).

Let us first consider the spectral function, ρ(p0, p). The interpolating field couples to the

states whose parity is opposite to that of the interpolating field, as well as the states with

the same parity of the interpolating field [24]. Therefore, in the zero-width approxmation,

Eq.(4) is expressed as

Π(p) =
∑

n

[

|λn
−|

2
p/ + mn

−

p2 − mn
−

2
+ |λn

+|
2

p/ − mn
+

p2 − mn
+

2

]

, (7)

where mn
∓ are the masses of negative and positive parity states, λn

∓ are the coupling strengths

of the interpolating field with negative and positive parity states, respectively. The spectral

function in the rest frame, p = 0, can be decomposed into two parts as follows,

ρ(p0) = P−ρ−(p0) + P+ρ+(p0), (8)

where P∓ = (γ0 ± 1)/2 and ρ∓(p0) are given by

ρ−(p0) =
∑

n

[

|λn
−|

2δ(p0 − mn
−) + |λn

+|
2δ(p0 + mn

+)
]

, (9)

ρ+(p0) =
∑

n

[

|λn
−|

2δ(p0 + mn
−) + |λn

+|
2δ(p0 − mn

+)
]

. (10)

Next, we construct the sum rule for negative parity states and that for positive parity.

We apply the projection operator P∓ to Eq.(6) for p = 0. Then we obtain

∫ ∞

−∞
dp0ρ

OPE
∓ (p0)W (p0) =

∫ ∞

−∞
dp0ρ∓(p0)W (p0). (11)

Note that in Eq.(11) the contribution from the positive and negative parity states are not

decoupled, since, as can be seen from Eqs.(9) and (10), each of ρ−(p0) and ρ+(p0) contains the

contribution from both of the parity states. What we want to do is to separate the negative or

positive parity contribution from Eqs.(11). (The following procedure is essentially equivalent

to that in Ref.[25].)

If ρOPE
∓ (p0) are separable into ρOPE

∓ (p0 > 0) and ρOPE
∓ (p0 < 0), we can separate Eq.(11)

into the contributions from p0 > 0 and p0 < 0. From the positive energy part, we obtain

∫ ∞

0

dp0ρ
OPE
− (p0)W (p0) =

∫ ∞

0

dp0ρ−(p0)W (p0), (12)
∫ ∞

0

dp0ρ
OPE
+ (p0)W (p0) =

∫ ∞

0

dp0ρ+(p0)W (p0). (13)
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Here we notice that only the negative (positive) parity states contribute to ρ−(p0 > 0)

(ρ+(p0 > 0)) (see Eqs.(9) and (10)). Eq.(12) is therefore the sum rule for the negative parity

states and Eq.(13) is that for the positive parity states.

A comment is in order here. In order to separate the negative and positive parity states in

the sum rule as Eqs.(12) and (13), it is necessary that ρOPE
∓ (p0) are separable into ρOPE

∓ (p0 >

0) and ρOPE
∓ (p0 < 0) as mentioned above. In general, ρOPE

∓ (p0) are not separable [26].

However, as will be seen below (Eqs.(18), (19) and (20)), ρOPE
∓ (p0) for pentaquark is separable

as long as we truncate the OPE at certain order, since ρOPE
∓ (p0) up to dimension 6 operator

have the p0 dependence as pn
0 [θ(p0) − θ(−p0)]. We thus derive the sum rule for each parity

state of the pentaquark as Eqs.(12) and (13).

We parameterize ρ∓(p0) with a pole plus continuum contribution,

ρ∓(p0) = |λ∓|
2δ(p0 − m∓) + |λ±|

2δ(p0 + m±) + [θ(p0 − ω∓) + θ(−p0 − ω±)]ρOPE(p0)(14)

Substituting Eq.(14) into the right-hand sides of Eqs.(12) and (13), we obtain the following

sum rules,

∫ ω∓

0

dp0ρ
OPE
∓ (p0)p

n
0 exp(−

p2
0

M2
) = m∓

n|λ∓|
2 exp(−

m∓
2

M2
) (15)

Here we have chosen the weight function as W (p0) = pn
0 exp(−p2

0/M
2). The parameter M

is called Borel mass. From Eq.(15) for n = 0, we obtain the sum rule for the pole residues

|λ∓|
2,

|λ∓|
2 exp(−

m∓
2

M2
) =

∫ ω∓

0

dp0ρ
OPE
∓ (p0) exp(−

p2
0

M2
). (16)

The ratio of Eq.(15) for n = 0 and n = 2 gives the sum rules for the masses,

m2
∓ =

∫ ω∓

0 dp0ρ
OPE
∓ (p0)p

2
0 exp(−

p2

0

M2 )
∫ ω∓

0 dp0ρOPE
∓ (p0) exp(−

p2

0

M2 )
. (17)

Let us now turn to the OPE. We have taken into account the terms up to dimension 6

operator. We show the result of the OPE,

ρOPE(p0) = γ0A(p0) + B(p0), (18)

where A(p0) and B(p0) are given by

A(p0) =
[

1

52 · 32 · 218π8
(p0)

11 +
−1

5 · 34 · 217π6
〈0|

αs

π
GaµνGa

µν |0〉(p0)
7
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+
1

33 · 212π6
ms〈0|s̄s|0〉(p0)

7 +
−1

5 · 32 · 210π6
msg〈0|s̄σ

µν(λa/2)Ga
µνs|0〉(p0)

5

+
1

5 · 28π4
〈0|q̄q|0〉2(p0)

5

]

× [θ(p0) − θ(−p0)] , (19)

B(p0) =
[

1

7 · 52 · 3 · 214π8
ms(p0)

10 +
−1

33 · 213π6
〈0|s̄s|0〉(p0)

8

+
1

5 · 32 · 210π6
g〈0|s̄σµν(λa/2)Ga

µνs|0〉(p0)
6

]

× [θ(p0) − θ(−p0)] , (20)

In Eqs.(19) and (20), q = u, d, ms is the strange quark mass, and 〈0|O|0〉 denotes the

vacuum expactation value of the operator O.

Here, before deriving the QCD sum rules for Θ++, we comment on the contribution of

the continuum states. In Ref.[27], it was pointed out that pentaquark correlation functions

receive contribution of two-hadron-reducible (2HR) diagrams, which represent baryons and

mesons propagating independently without interacting with each other. The 2HR diagrams

are related only with the background (continuum states). We can make the background

contribution in the sum rules as small as possible by subtracting the 2HR diagrams. It is

better to subtract them especially in the sum rules for JP = 1/2± pentaquark, where the

NK continuum contribution should be significant. However, in the sum rules for JP = 3/2−

pentaquark, the NK continuum contribution itself is expected to be small, since the N and

K are relatively D-wave in this channel. Hence, in this paper, we consider the correlation

function without subtracting the 2HR parts.

We substitute ρOPE
∓ (p0) = A(p0)±B(p0) with Eqs.(19) and (20) into the right hand sides

of Eqs.(16) and (17). Then we obtain the QCD sum rules for Θ++.

We plotted in Fig.1 the right-hand side of Eq.(16) for the negative parity state as a

function of the Borel mass, M . Here and hereafter we use the standard values of the

QCD parameters, 〈0|q̄q|0〉 = (−0.23 GeV)3, ms = 0.12 GeV, 〈0|s̄s|0〉 = 0.8〈0|q̄q|0〉,

g〈0|s̄σµν(λa/2)Ga
µνs|0〉 = (0.8 GeV2)〈0|s̄s|0〉, 〈0|αs

π
GaµνGa

µν |0〉 = (0.33 GeV)4. As can be

seen, the right-hand side of Eq.(16) is positive. This implies that the present QCD sum rule

does not exclude the possiblity of the exisitence of the Θ++ with negative parity since the

left-hand side of Eq.(16) must be positive.

In Fig.2, we plotted the mass of Θ++ with negative parity against the Borel mass which is

obtained from Eq.(17). We see that the dependence on the Borel mass is weak. This implies

that the sum rule works well. However, the result depends on the choice of the continuum

thershold ω−. The continuum mainly comes from the S-wave ∆K scattering states, whose
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FIG. 1: |λ−|
2 exp(−m∓

2

M2 ) as functions of Borel mass, M with the continuum threshold parameter

ω− = 1.8GeV.

threshold is 1.73 GeV, since NK scattering state must be D-wave in this channel and it

starts up very gradually. Thus we choose ω− = 1.73, 1.8, 1.9 GeV. From the stabilized

region of the curve, we predict the mass to be 1.5 ∼ 1.6 GeV, which is close to the observed

Θ+ mass. The mass is much below the ∆K threshold. This implies that the Θ++ with

JP = 3/2− can be extremely narrow since it is allowed to decay only to D-wave KN state

and the width is strongly suppressed due to the large centrifugal barrier.

It is remarkable that such a high spin and isovector state can be a low lying state, which

is not the case for ordinary baryons. The possibility of JP = 3/2−, I = 1 pentaquark

being low lying state has been suggested by the previous calculation from a quark model

[19]. In Ref.[19], a simple quark model in which constituent quarks interact via one-gluon

exchange force at short distances and confining (or string) potential at long distances was

considered. A q4q̄ system has a connected string configuration corresponding to a confined

state, in addition to an ordinary meson-baryon like configuration. A variational method

called antisymmetrized molecular dynamics (AMD) [20, 21] was applied to the confined

uudds̄ system and all the possible spin parity states were calculated. The narrow and low

lying states they have found are JP = 1/2+ or 3/2+ with I = 0 and JP = 3/2− with I = 1

7



states. The former has just the same structure as that conjectured by Jaffe and Wilczek

[12]. We represent it as [ud]S=0,I=0[ud]S=0,I=0[s̄], where [ud]S,I denotes a color 3̄ ud-diquark

with spin S and isospin I. Both of the two diquarks gain color magnetic interaction since

they have S = 0. However, this state loses the kinetic and string energy, since the two

diquarks, which are to be antisymmetric in color, are identical and must be relatively P -

wave. In Ref.[19], another energetically favorable state has been predicted, which consists

of an S = 0 diquark and an S = 1 diquark: [ud]S=0,I=0[ud]S=1,I=1[s̄]. This state is totally

JP = 3/2− and I = 1. It loses color magnetic interaction since one of the diquarks has S = 1.

However, it gains kinetic and string energy, since the two diquarks are no longer identical

and they can be relatively S-wave. Owing to the balance between the energy gain and loss,

JP = 3/2−, I = 1 state degenerate with JP = 1/2+ or 3/2+, I = 0 state. Within the quark

model employed in Ref.[19], however, one cannot predict the absolute masses but only the

level structure of the pentaquarks, because this quark model relies on the zero-point energy

of the confining potential. In Ref.[19], it was adjusted to reproduce the observed mass of

Θ+. Whereas, the QCD sum rule is able to estimate the absolute mass. We confirmed from

the QCD sum rule that the JP = 3/2−, I = 1 state actually can be a low lying state, using

the interpolating field, Eq.(2), which has the same structure as that suggested by the quark

model.

The pentaquark with JP = 3/2− and I = 1 has also been found from the chiral unitary

approach, as a resonance state in the ∆K channel [29]. This state is generated due to an

attractive interaction in that channel existing in the lowest order chiral Lagrangian. The

attractive interaction leads to a pole of the complex energy plane and manifests itself in

a large strength of the ∆K scattering amplitude with L = 0 and I = 1. We note that

the interpolating field, Eq.(2), can also couple with such a ∆K resonance states because it

contains the ∆K component as is shown by Fierz transformation.

Let us turn to the sum rule for the positive parity state. We plotted in Fig.3 the right-

hand side of Eq.(16) for the positive parity state as a function of the Borel mass, M . The

right-hand side of Eq.(16) is positive, which implies that the exisitence of the positive parity

state is not excluded. The mass against the Borel mass is shown in Fig.4. The continuum in

this channel mainly comes from the P -wave NK scattering states. We choose ω+ = 1.7, 1.8,

1.9 GeV. Although the curve depends on the choice of the continuum threshold parameter,

we can say that the positive parity state nearly degenerate with the negative parity state.
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FIG. 2: Mass of JP = 3/2−, I = 1 pentaquark as a function of Borel mass, M , with the continuum

threshold parameters ω− = 1.73GeV (solid line), 1.8GeV (dashed), 1.9GeV (dotted).

However, the positive parity state is expected to be broader than the negative parity state,

since the former can decay into P -wave NK states while the latter only to D-wave NK

states. The present result is consistent with a recent calculation by Skyrme model [30]. The

authors in Ref.[30] predicted that there exists a new isotriplet of Θ-baryons with JP = 3/2+

and I = 1. Its mass is 1595 MeV and the width is large: Γ ∼ 80 MeV.

In summary, we have studied J = 3/2, I = 1 pentaquark, Θ++, using the method of QCD

sum rule. We used the interpolating field constructed from a color anti-triplet scalar isoscalar

diquark, a color anti-triplet axial-vector isovector diquark and an anti-strange quark. We

have derived the QCD sum rules for the negative and positive parity states. QCD sum rule

predicts a narrow Θ++ (JP = 3/2−). Its mass is predicted to be 1.5 ∼ 1.6 GeV, which is

much below the ∆K threshold. Since only the D-wave decay to NK channel is allowed,

it should be an extremely narrow state. QCD sum rule also shows the possibility of the

existence of the JP = 3/2+ state. It nearly degenerates with the negative parity state. It

may be broader than the negative parity state, since it is allowed to decay into P -wave NK

state. It is worth mentioning that this is the first QCD sum rule analysis of high spin states

of the pentaquark. Most of the works using QCD sum rules and Lattice QCD concentrate
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M2 ) as functions of Borel mass, M with the continuum threshold parameter

ω+ = 1.8GeV.
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FIG. 4: Mass of JP = 3/2+, I = 1 pentaquark as a function of Borel mass, M with the continuum

threshold parameters ω+ = 1.7GeV (solid line), 1.8GeV (dashed), 1.9GeV (dotted).
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on J = 1/2 and I = 0 pentaquark states. It would be interesting to see if lattice calculation

could confirm these findings.
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